
JVM Memory Management and ColdFusion Log Analysis
Posted At : September 9, 2010 5:24 PM | Posted By : Steven Erat
Related Categories: Java, Quality Assurance, ColdFusion, Computer Technology

The following is a document I wrote for knowledge sharing with some peers, but I feel
that it might have some value to other ColdFusion Devs, Testers, and Admins out there.
The purpose was to illustrate how I went about analyzing CF's performance during a
prior troubleshooting session. I'm re-purposing the content here after scrubbing some
private information. Hopefully it still makes sense, although slightly out of context.

These are some technical notes on what to look for when analyzing ColdFusion server
performance history. It includes concepts and techniques to assess what performance
related problems might exist, emphasizing memory usage issues first. This is a
somewhat simplified explanation about how the JVM manages memory and its relation
to CF applications, and about how I went about analyzing them. There are many
similar resources on the web, but I found many of them are quite technical, so this
article is written with more of a layman's approach to make it more digistible to those
not as familiar with troubleshooting ColdFusion or Java apps.

The ColdFusion Application Server runs inside (is "contained" in) a higher level JRun
J2EE server. The J2EE server (and therefore the CF server) run on top a JVM (Java
Virtual Machine). To analyze the ColdFusion and JVM performance, I take a forensic
approach. I start by collecting the ColdFusion and JRun server logs. I also colelct the
JVM Garbage Collection (GC) log that has been manually enabled to log information
regarding how the JVM is cleaning up the memory that is has used. The JVM is
configured with an algorithm that tells it what approach to take when cleaning up and
freeing memory. The application's Java objects (like queries, session variables, local
variables, cfc instances, etc) are held in the JVM's memory. Objects are said to hold
"references" in memory, meaning that something in the application is potentially using
that object. When the application no longer has a need for an object, its memory is
dereferenced. That dereferenced memory can be released by the JVM and then reused
by other objects that require it.

Garbage Collection is the mechanism that searches through all objects in memory and
determines if they are referenced or not, and for releasing the memory of
dereferenced objects. The JVM has 2 major divisions for where it puts objects in
memory, where the divisions are referred to as Generations. All objects first go into
the "New Generation" (sometimes called the Young Generation). Then beginning a few
seconds after the application starts, the JVM starts performing "Minor GCs" that only
look at the objects in the New Generation. If objects in the New Gen are no longer
needed (no longer referenced), GC cleans them up and marks the memory as free. For

Steven Erat's Blog | TalkingTree.com: JVM Memory Management and ColdFusion Log Analysis

New Gen objects that are still used, it moves them into another division called the
"Tenured Generation" (sometimes called the Old Generation). That's where long lived
objects are stored.

Objects that go into the New Gen that never make it into the Tenured Gen are usually
variable scopes that "live" only for the length of a ColdFusion request. Examples are
the Variables scope, the Request scope, URL and Form scopes, and private Local scope
inside CFC methods. When the page request ends, those objects aren't referred to any
more so the GC will (try to) free any memory they used to be reused by other objects.
However, ColdFusion has longer lived objects as well, and examples are variables in
the Session scope or Application scope, but also includes less obvious objects such as
Cached Queries (and perhaps the virtualized RAMFS). Those longer lived objects will
get moved from the New Gen to the Tenured Gen when GC runs because the
application continues to use (hold references to) those objects after the page request
ends.

Note this is a simplified description. The JVM Generations are actually broken down
into small divisions (Eden, Survivor spaces) within the larger ones, but its not necessary
to discuss it at that level here. There is also the "Permanent Generation" which stores
very long lived objects like the classes that represent CFM/CFC templates. The
PermGen has it's own heap, and is separate from the main JVM heap. See web links
below for online references with more details.

There are several important terms to understand regarding memory and the JVM. The
JVM can "allocate" memory, meaning it asks for that amount of memory from the
operating system (OS). But once it allocates memory it doesn't necessarily "use" all
that memory. Usually the JVM tries to allocate a bit more memory than it actually
needs to use. So the allocated memory is approximately the same as the overall
memory foot print you would see when looking at the jrun.exe process in Task Manager
on Windows. The memory allocated by the JVM is referred to as the "heap". The JVM
can be configured to have a maximum and minimum size to the heap. Since asking the
OS for more memory is an expensive operation, setting the minimum heap size equal
to the maximum heap size is thought to produce better performance because as soon
as the application server starts, the JVM will allocate (reserve) as much memory as it
will ever be allowed to, eliminating having to ask the OS for more memory or to give
free memory back to the OS.

The JVM start up parameters are configured via a file at JRun4/bin/jvm.config. Here is
a snippet from a jvm.config on a PROD_SERVER server and an explanation of it:

Steven Erat's Blog | TalkingTree.com: JVM Memory Management and ColdFusion Log Analysis

java.args=-Xmx12800M -server -Xms12800m -XX:+PrintGCDetails
-XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -verbose:gc
-Xloggc:PROD_GC.log -XX:PermSize=512m -XX:MaxPermSize=1024m
-XX:NewRatio=3 -XX:+UseParallelGC

These are the critical parameters passed to the JVM when it starts, as well as some
parameters that help to debug it's memory usage. A few other parameters were
omitted from this snippet because they weren't related to the discussion.

-Xmx12800M Â« This is the Max Heap size setting. Here it is set to 12800MB or
12.5GB
-Xms12800m Â«This is the Minimum Heap size setting. It is set to be equal to the
Max Heap for better performance
-XX:+PrintGCDetails Â«This is used for debugging. It means write the details of
Garbage Collection to a log file
-XX:+PrintGCTimeStamps Â« This is used for debugging. It means write
timestamps of when GC activity occurred into the GC log file.
-XX:+PrintHeapAtGC Â« This is used for debugging. This means to include heap
information when logging GC activity.
-verbose:gc Â« This is used for debugging. It tells the JVM to log as much
information as possible about GC activity.
-Xloggc:PROD_GC Â« This is used for debugging. Found in JRun4/bin/ directory,
the log name here would be PROD_GC.log
-XX:PermSize=512m Â«This is an optional parameter for the starting size of the
"Permanent Generation" heap. PermGen not discussed here.
-XX:MaxPermSize=1024m Â«This max size of the Perm Gen.
-XX:NewRatio=3 Â«This means to make the New Generation size equal to Âº the
total heap size (literally a 1:3 ratio of New to Tenured)
-XX:+UseParallelGC Â«This is the GC algorithm to use. There are several to
choose from based on need. Not discussed here.

The exact time Garbage Collection is run can't be controlled. An application could ask
the JVM to run GC, but the JVM will not necessarily run GC when requested but will
schedule it at the next opportunity. Normally, applications don't ask the JVM to
perform GC. Instead, the JVM is configured to use one of several possible algorithms
about how best to perform Garbage Collection. The algorithm is chosen is based on
needs of the application and can affect performance in different ways. The goal is to
choose an algorithm that works well for your hardware resources and application
needs. Ideally for web applications it is desirable to choose an algorithm that produces

Steven Erat's Blog | TalkingTree.com: JVM Memory Management and ColdFusion Log Analysis

minimal interruption to the user experience. The one here, -XX:+UseParallelGC, is the
default configuration when ColdFusion is installed. This is a deep topic I won't go into
further here.

Since the JVM minimum heap is set to the max heap, to understand the JVM memory
behavior you have to also look at Memory Used, Memory Free, and Memory Allocated.
In this case the Min Heap size reserved is 12.5GB for the JVM, so the JVM will actually
allocate the whole 12.5GB right away. But in practice the CF servers only use a
fraction of the total amount reserved.

If you theoretically gave a JVM as much memory as it could ever need, the normal JVM
behavior would be for the Memory Used to grow to a high water mark, and only on
occasion exceed it. That high water mark is sometimes referred to as an application's
memory footprint. In fact, because GC runs in a periodic fashion and releases some
fraction of memory used, a graph of JVM Memory Used would look a lot like a flat line
with saw teeth. If, however, an application seems to gradually increase the amount of
memory it uses, producing a graphed line of an upwardly slanted saw tooth, then it
would be said that the application has a memory leak where something in the app
constantly requires more and more memory. A memory leak can happen in an
application when it creates objects that live a long time, and keeps creating them
rather than destroying previously created objects and reusing that memory. In
ColdFusion terms, this could happen due a problem in the programming logic of an app
where objects like queries or even small variables are stored in the long lived
Application scope. In practice, the Application scope lives indefinitely, and objects are
left there unless the program specifically removes them. So it an app unwittingly kept
putting more and more objects in the Application scope, the JVM memory used would
be seen to grow and grow indefinitely.

In more practical terms, JVMs are configured with a Maximum Heap size to limit how
much memory the JVM could ever have. Ideally the application memory footprint
would be determined through testing and the Max Heap size would set somewhat larger
than that sawtoothed footprint, giving the app enough for what it needs, but not much
more. Sometimes an app is coded in a way that causes it to unexpectedly require
significantly more memory than the typical footprint for that app. This could be a
memory leak behavior with potential for an infinite upward trend, or it could be that
the unexpected requirement is actually 2x or 3x as much as normal without increasing
further (for you marine biologists out there, that would called a Spring Tide, the
highest of the high tides).

When an application causes the JVM to attempt to use more memory than it is
permitted to allocate to the heap, a Java exception occurs,
java.lang.OutOfMemoryError (OOM). When an OOM error is logged, it may appear with

Steven Erat's Blog | TalkingTree.com: JVM Memory Management and ColdFusion Log Analysis

several different sub-contexts that have different meaning. Usually it would be logged
as "java.lang.OutOfMemoryError: Java heap space". This context typically means
exactly what it looks like. The JVM tried to use more memory than it had. However,
the OOM errors can be logged in other forms such as "java.lang.OutOfMemoryError: GC
overhead limit exceeded". In this case, there is an exact definition stating that the
JVM was spending 98% of its time trying to perform GC but could only free up less than
2% of the memory used.

When an OOM exception occurs, whatever request or activity the JVM was executing
would be terminated abruptly without completing. Moreover, when several OOMs
occur together chronologically it is a symptom that the application is using the
maximum amount of memory allowed and that the JVM throughput performance (how
many requests it can process per unit time) is decreased. The JVM throughput
decreases because it is spending more time than normal trying to free up memory from
the heap by looking for unused, dereferenced objects. When a JVM GC cycle runs, it
can be a Minor GC where just the New Gen is cleaned up, but less frequently a "Full
GC" is run which will try to free up memory in both the New and Tenured Generations.
When a Full GC runs, all other activity in the JVM halts and no requests are processed
until the Full GC is complete. Full GCs are sometimes referred to as Stop The World
GCs.

Normally, Full GCs are short and infrequent, happening a couple times per hour and
usually lasting 50 to 100 milliseconds at most. But when the JVM is having OOM issues,
Full GCs can happen several times per minute, lasting 5 to 20 seconds or more each
time. In that worst case scenario, the JVM throughput would fall dramatically and the
application would appear to be unresponsive or hung since the JVM is effectively
stalled while it keeps trying to free up memory. Usually at that point someone in IT is
notified because some monitor alarms have gone off, and the application server will be
restarted. Sometimes the JVM can recover if given some more time, but to the end
user of an application it will appear dead until then.

When I begin reviewing the logs, I collect them from JRun4/logs, from
JRun4/servers/PROD_SERVER/cfusion.ear/cfusion.war/WEB-INF/cfusion/logs, and the
PROD_GC.log from JRun4/bin and transfer them to my local computer. It's important
to note that the GC log, named PROD_GC.log here, will be overwritten completely
every time the CF server is restarted. So while the JRun and CF logs will contain a
full history, the GC log is only as good as the last restart.

Here are some steps I usually take to make sense of the log information:

Steven Erat's Blog | TalkingTree.com: JVM Memory Management and ColdFusion Log Analysis

- All logs: Examine them from a place where they can be quickly and efficiently
searched. I copy them to my Mac laptop where I could use Unix command line tools to
extract useful information into a condensed format. For example, from the large and
verbose GC log, I was able to isolate the timestamp and duration of the Full GCs by
running this command:

o grep "Full GC" PROD_GC.log | cut -d"[" -f1,6 | grep secs
| cut -d" " -f1,5,6 | cut -d"]" -f1

This produced this kind of clean output from a very verbose and noisy log file:

3.285: real=0.06 secs
3603.606: real=1.17 secs
7205.023: real=1.16 secs
10806.527: real=1.77 secs

GC log: Determine the log start time from the file creation date, then convert the
timestamps from seconds since server start to actual date/times. This way the GC log
can be compared chronologically to events in the CF or JRun logs. Key features to look
for are Full GCs that occur close together chronologically, and Full GCs that last more
than a second or two.

I'll add as a foot note to this that I tried the IBM PMAT tool to analyze the GC log,
recommended by Brandon Harper, but found several problem. First, on one server
during the memory related problem time, the timestamps were out of order, rendering
the tool useless. I also found that the logs do contain "Full GC" statements yet the
PMAT tool kept reporting 0 Full GC occurrences.

- JRun logs: Manually scan a couple recent logs to see the range of entries that occur
to get a feel for what type of issues are frequent. Then do some searches to look for
things known to be bad like Memory errors. For example the following will extract all
memory errors from all the logs and write them to a new file to easily review.

o grep Memory PROD_SERVER-o*.log > memory_errors.txt

This might produce output like this (Note that Memory errors often don't get
timestamps written next to them so you have to manually review the log having them):

PROD_SERVER-out41.log:java.lang.OutOfMemoryError: GC
overhead limit exceeded
PROD_SERVER-out41.log:java.lang.OutOfMemoryError: Java

Steven Erat's Blog | TalkingTree.com: JVM Memory Management and ColdFusion Log Analysis

http://www.alphaworks.ibm.com/tech/pmat
http://devnulled.com/

heap space
PROD_SERVER-out45.log:Exception in thread
java.lang.OutOfMemoryError: GC overhead limit exceeded
PROD_SERVER-out45.log:Exception in thread
java.lang.OutOfMemoryError: GC overhead limit exceeded
PROD_SERVER-out45.log:java.lang.OutOfMemoryError: Java
heap space

JRun logs: If the Metrics logging feature has been enabled, then the JRun logs will
contain frequent entries showing the number of requests running, number of sessions,
and used/free JVM memory. Metrics may appear in their own log or may be mixed in
with the -out.log. One way to quickly examine the Metrics logging for, say, the number
of sessions active on a given date would be:

o grep "09/03" PROD_SERVER-out*.log | grep "Sess:" | cut d"
" f2,8,9,10,11 > Sessions_0903.txt

Results:

05:44:46 Sess: 2727 Total/Free=12903744/10739858
05:45:06 Sess: 2733 Total/Free=12903744/10639087
05:45:26 Sess: 2731 Total/Free=12196800/8246066
05:45:49 Sess: 2726 Total/Free=12014976/4159270
05:46:12 Sess: 2725 Total/Free=12014976/2085405
05:46:59 Sess: 2718 Total/Free=12014976/1330244

CF logs: Get a list of when the CF server restarted from the server.log. The following
will output the date and time of every CF server restart:

o grep started server.log | cut -d"," -f3,4

Results:

"09/01/10","00:00:46
"09/05/10","16:08:55"
"09/06/10","08:50:12"

- CF logs: Scan the recent application.log, exception.log, and server.log to see if
anything of interest appears, then perform searches to isolate any specific types of

Steven Erat's Blog | TalkingTree.com: JVM Memory Management and ColdFusion Log Analysis

entries.

- All logs: Once you've identified log entries and events of interest, start cross
referencing entries from all the different logs where relevant. The objective is to
build a story of what happened in the application by following the chronology of
events in the logs as they unfolded.

Cross reference memory errors to server restarts. Cross reference Full GCs to groupings
of timeout errors in CF logs. Follow memory used over time and look for patterns of
unusual or suddent memory growth. If there are unusual events that occur with the
same periodicity, say every day at X o'clock, then look for scheduled tasks that occur at
that time, or correlate to social patterns like sudden web load right around 9:00 AM
when users of the web application arrive at work.

It should be noted that at times when the JVM is reporting frequent memory errors
that other unusual events may be seen in the logs that don't occur at other times. I
think of these as secondary effects caused by insufficient memory, and that if memory
were no problem the secondary issues wouldn't happen. An example is that on one
server I found that the timestamps of log entries (JRun logs, CF logs, and GC log) were
written out of order. Unusual timeout errors might occur, or other unusual errors might
occur during the OOM issues. So be wary of spending time chasing down those
secondary issues, and try to seek out the upstream, primary cause instead.

To provide an example of my initial findings on the servers, the first hot issue I was
able to identify was OOM errors and very high memory usage that occurred every day
at exactly the same time to the minute. Within 2 minutes memory would grow from
1.5GB used to 10GB used. The pattern was observed on the main, clustered production
servers, although it might be on one prod server today and a different prod server
tomorrow as the instances are load balanced. Because the problem occurred when
regular web app users were off the system early in the morning I looked for scheduled
tasks that might be involved. One such scheduled task was identified to run at that
exact time each day. The code was reviewed, and from a QA point of view it was
assessed that there was potential for high memory usage from a single request based
on monolithic logic that analyzed tens of thousands of documents with mult-level
nested looping constructs. The key problem is that Java objects created during page
execution can't be Garbage Collected until the page request is completed. All objects
created by the request exist for the life of the request. So as long as its running it
could be requiring more and more memory as it processes those tens of thousands of
documents.

By analogy, the ColdFusion web application server is normally intended for high traffic

Steven Erat's Blog | TalkingTree.com: JVM Memory Management and ColdFusion Log Analysis

with relatively fast running requests, but it was being used as though it were more of
a Mainframe computer running a single, large C program. While using CF that way is
possible, doing so will produce very different application behaviors and have different
performance requirements than it would normally while serving lots and lots of short
web page requests.

At this point since the evidence against this scheduled task was strong, the onus is on
Development to confirm or refute that the job consumes memory as thought, and then
to revise the job for better performance. One technique was suggested, to break down
the job into a series of small jobs that run in succession. Say run the first few thousand
documents to be analyzed, then the next few thousand, until done. That would allow
each mini-job to complete, and allow objects created during the request to be garbage
collected and the memory reused for the next job. If each mini-job runs shorter and
processes fewer documents, then the total memory requirement would likely be much
less. This would be a scalable tactic since you could chain together many such jobs in
sequence during times when business grows and larger numbers of documents need to
be analyzed.

For a more academic understanding of JVM memory management see these articles:

Tuning Garbage Collection Outline (An overview)

http://www.petefreitag.com/articles/gctuning/

Tuning Java Garbage Collection (Very thorough)

http://www.oracle.com/technetwork/java/gc-tuning-5-138395.html

Troubleshooting a Leaky Heap in your JVM (ColdFusion specific)

http://www.coldfusionmuse.com/index.cfm/2008/2/12/leaky.heap.jvm

Steven Erat's Blog | TalkingTree.com: JVM Memory Management and ColdFusion Log Analysis

http://www.petefreitag.com/articles/gctuning/
http://www.oracle.com/technetwork/java/gc-tuning-5-138395.html
http://www.coldfusionmuse.com/index.cfm/2008/2/12/leaky.heap.jvm

JVM Options

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

Steven Erat's Blog | TalkingTree.com: JVM Memory Management and ColdFusion Log Analysis

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

